
COP 3330: GUIs In Java – Part 2 Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Introduction To GUIs and Event-Driven

Programming In Java – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: GUIs In Java – Part 2 Page 2 © Dr. Mark Llewellyn

Using Panels as Subcontainers

• Suppose that you want to place ten buttons and a text field in a frame. The
buttons are placed in a grid formation, but the text field is to be placed on a
separate row.

• It would be difficult to achieve this effect by placing all of the components
into a single container. With Java GUI programming, you can divide a
window into panels.

• Panels act as subcontainers to group user-interface components. We can then
add the buttons to one panel and then add the panel into the frame.

• The Swing version of panel is JPanel. You can use

new JPanel() to create a panel with a default

FlowLayout manager

or –

new JPanel(LayoutManager) to create a panel with the specified

layout manager.

• The following example illustrates using panels as subcontainers.

COP 3330: GUIs In Java – Part 2 Page 3 © Dr. Mark Llewellyn

Example – Using Panels

COP 3330: GUIs In Java – Part 2 Page 4 © Dr. Mark Llewellyn

The program uses panel p1 (GridLayout manager) to group the number buttons, the

Start button, and the Stop button, and panel p2 (BorderLayout manager) to hold a

text field in the north and the panel p1 in the center. The button representing the food is

placed in the center of the frame, and p2 is placed in the east of the frame. See pages 6

and 7.

COP 3330: GUIs In Java – Part 2 Page 5 © Dr. Mark Llewellyn

JButton

JFrame

JPanel p2

JPanel p1

COP 3330: GUIs In Java – Part 2 Page 6 © Dr. Mark Llewellyn

Initial frame – no components

added yet.

Showing just panel p1

added to the frame.

COP 3330: GUIs In Java – Part 2 Page 7 © Dr. Mark Llewellyn

Showing panel p2 added to the frame –
panel p2 uses a BorderLayout with the

JTextField placed in the North area and

panel p1 placed in the Center area. Other

areas on the BorderLayout are not used.

Showing final frame using
BorderLayout. Added a JButton

(“Food to be placed here”) to the

Center area. Added panel p2 to the

East area.

A button

A textfield

12

buttons

frame

p2

p1

COP 3330: GUIs In Java – Part 2 Page 8 © Dr. Mark Llewellyn

Common Features of Swing GUI Components

• We’ve already used several GUI components (e.g., JFrame,
Container, JPanel, JButton, JLabel,

JTextField) in the previous example.

• We’ll see many more GUI components as we continue on, but it
is important to understand the common features of Swing GUI
components.

• The Component class is the superclass for all GUI components
and containers. All Swing GUI components (except JFrame,
JApplet, and JDialog) are subclasses of JComponent (see
Part 1 pages 5 and 9).

• The next page illustrates some of the more commonly used
methods in Component, Container, and JComponent for
manipulating properties like font, color, size, tool tip text, and
border.

COP 3330: GUIs In Java – Part 2 Page 9 © Dr. Mark Llewellyn

Common Features of Swing Components

java.awt.Container

+add(comp: Component): Component

+add(comp: Component, index: int): Component

+remove(comp: Component): void

+getLayout(): LayoutManager

+setLayout(l: LayoutManager): void

+paintComponents(g: Graphics): void

Adds a component to the container.

Adds a component to the container with the specified index.

Removes the component from the container.

Returns the layout manager for this container.

Sets the layout manager for this container.

Paints each of the components in this container.

java.awt.Component

-font: java.awt.Font

-background: java.awt.Color

-foreground: java.awt.Color

-preferredSize: Dimension

-visible: boolean

+getWidth(): int

+getHeight(): int

+getX(): int

+getY(): int

The font of this component.

The background color of this component.

The foreground color of this component.

The preferred size of this component.

Indicates whether this component is visible.

Returns the width of this component.

Returns the height of this component.

getX() and getY() return the coordinate of the component’s
upper-left corner within its parent component.

javax.swing.JComponent

-toolTipText: String

-border: javax.swing.border.Border

The tool tip text for this component. Tool tip text is displayed when

the mouse points on the component without clicking.

The border for this component.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 2 Page 10 © Dr. Mark Llewellyn

Common Features of Swing GUI Components

• A tool tip text is text displayed on the component when you
move the mouse on the component. It is often used to describe
the function of a component.

• You can set the border on any object of the JComponent class.
Swing has several types of borders.

– For example, to create a titled border, use:

new TitledBorder(String title)

– To create a line border use:

new LineBorder(Color color, int width)

where width specifies the thickness of the line in pixels.

• The following example illustrates some of the common Swing
features.

COP 3330: GUIs In Java – Part 2 Page 11 © Dr. Mark Llewellyn

Example – Common Swing Features

COP 3330: GUIs In Java – Part 2 Page 12 © Dr. Mark Llewellyn

Insertion point for

statements shown

on page 16.

COP 3330: GUIs In Java – Part 2 Page 13 © Dr. Mark Llewellyn

A titled

border

COP 3330: GUIs In Java – Part 2 Page 14 © Dr. Mark Llewellyn

Moving the mouse over the left

button causes the tool text tip to

display.

COP 3330: GUIs In Java – Part 2 Page 15 © Dr. Mark Llewellyn

Change the layout manager for panel p1 to a GridLayout. Notice the difference?

Flow Layout Grid Layout

COP 3330: GUIs In Java – Part 2 Page 16 © Dr. Mark Llewellyn

NOTE

• The same property may have different default values in different components.

• For example, the visible property in JFrame is false by default, but it is true
in every instance of JComponent (e.g., JButton and JLabel) by
default.

• To display a JFrame, you must invoke setVisible(true) to set the
visible property true, but you don’t need to set this property for a JButton or
a JLabel because it is already true.

• To make a JButton or a JLabel invisible, you need to invoke
setVisible(false) on the button or label.

• Rerun the TestSwingCommonFeatures program again after inserting the
two lines, shown below, immediately prior to adding the panels to the frame
(see page 12).

jbtLeft.setVisible(false);

jlblRed.setVisible(false);

The effect of adding these two lines is shown on the next page.

COP 3330: GUIs In Java – Part 2 Page 17 © Dr. Mark Llewellyn

Making button and label invisible

COP 3330: GUIs In Java – Part 2 Page 18 © Dr. Mark Llewellyn

Image Icons
• An icon is a fixed-size picture; typically it is small and used to

decorate components.

• Images are stored in image files. Java currently supports three
image formats: GIF (Graphics Interchange Format), JPEG (Joint
Photographic Experts Group), and PNG (Portable Network
Graphics). The image file names for these types end with .gif,
.jpg, and .png respectively. If you have a bitmap file or
image files in other formats, you can use image-processing
utilities to convert them into GIF, JPEG, or PNG formats for use
in Java.

• To display an image icon, first create an ImageIcon object
using new javax.swing.ImageIcon(filename). For
example, the following statement creates an icon from an image
file us.gif in the image directory under the current class
path: ImageIcon icon = new ImageIcon(“image/us.gif”);

COP 3330: GUIs In Java – Part 2 Page 19 © Dr. Mark Llewellyn

Image Icons
• The back slash (\) is the Windows file path notation. In Unix, the

forward slash (/) should be used.

• In Java, the forward slash (/) is used to denote a relative file path
under the Java classpath (e.g., image/us.gif, as in this
example).

• File names are not case sensitive in Windows but are case
sensitive in Unix. To enable your programs to run on all
platforms, name all image files consistently using only lowercase
letters.

• The following example illustrates image icons. This example
uses both relative and absolute path names to the image files so
that you’ll have examples of both types.

COP 3330: GUIs In Java – Part 2 Page 20 © Dr. Mark Llewellyn

Example – Using Image Icons

Relative address – in

current project directory

Absolute address – uses

fully specified path

COP 3330: GUIs In Java – Part 2 Page 21 © Dr. Mark Llewellyn

Commonly Used GUI Components
• A graphical user interface (GUI) makes a system user-friendly

and easy to use. Creating a GUI requires creativity and
knowledge of how GUI components work. Since the GUI
components in Java are very flexible and versatile, you can create
a wide assortment of useful user interfaces.

• Many Java IDEs provide tools for visually designing and
developing GUIs that enable you to rapidly assemble the
elements of a user interface for a Java application with minimal
coding. However, such tools cannot do everything that you
would like and you need to modify the programs that they
produce, so you need to be familiar with the basic concepts of
Java GUI programming.

• To this end, we’ll examine many of the more commonly used
GUI components in Java.

COP 3330: GUIs In Java – Part 2 Page 22 © Dr. Mark Llewellyn

Commonly Used GUI Components

AbstractButton

 JToggleButton

 JCheckBox

 JRadioButton

 JComboBox

 JList

 JSlider

 JTextComponent

 JLabel

 JButton

Component Container JComponent

 JTextField

 JTextArea

 JScrollBar

 JPasswordField

COP 3330: GUIs In Java – Part 2 Page 23 © Dr. Mark Llewellyn

Buttons

• A button is a component that triggers an action event when
clicked.

• Swing provides regular buttons, toggle buttons, check box
buttons, and radio buttons.

• The common features of these buttons are generalized in
javax.swing.AbstractButton.

• The UML for this class is shown on page 24.

• Many common buttons are defined in the JButton class.
The JButton class extends AbstractButton and its
UML is shown on page 25.

COP 3330: GUIs In Java – Part 2 Page 24 © Dr. Mark Llewellyn

javax.swing.AbstractButton

javax.swing.AbstractButton

-actionCommand: String

-text: String

-icon: javax.swing.Icon

-pressedIcon: javax.swing.Icon

-rolloverIcon: javax.swing.Icon

-mnemonic: int

-horizontalAlignment: int

-horizontalTextPosition: int

-verticalAlignment: int

-verticalTextPosition: int

-borderPainted: boolean

-iconTextGap: int

-selected(): boolean

The action command of this button.

The button’s text (i.e., the text label on the button).

The button’s default icon. This icon is also used as the "pressed" and
"disabled" icon if there is no explicitly set pressed icon.

The pressed icon (displayed when the button is pressed).

The rollover icon (displayed when the mouse is over the button).

The mnemonic key value of this button. You can select the button by

pressing the ALT key and the mnemonic key at the same time.

The horizontal alignment of the icon and text (default: CENTER).

The horizontal text position relative to the icon (default: RIGHT).

The vertical alignment of the icon and text (default: CENTER).

The vertical text position relative to the icon (default: CENTER).

Indicates whether the border of the button is painted. By default, a regular

button’s border is painted, but the borders for a check box and a radio

button is not painted.

The gap between the text and the icon on the button (JDK 1.4).

The state of the button. True if the check box or radio button is selected,

false if it's not.

javax.swing.JComponent

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 2 Page 25 © Dr. Mark Llewellyn

javax.swing.JButton

javax.swing.JButton

+JButton()

+JButton(icon: javax.swing.Icon)

+JButton(text: String)

+JButton(text: String, icon: Icon)

Creates a default button with no text and icon.

Creates a button with an icon.

Creates a button with text.

Creates a button with text and an icon.

javax.swing.AbstractButton

COP 3330: GUIs In Java – Part 2 Page 26 © Dr. Mark Llewellyn

Icons, Pressed Icons, and Rollover Icons

• A regular button has a default icon, a pressed icon,
and a rollover icon.

• Normally, you use the default icon. The other icons
are for special effects. A pressed icon is displayed
when a button is pressed, and a rollover icon is
displayed when the mouse is positioned over the
button but not pressed.

• The example on the next page, displays the
American flag as a regular icon, the Canadian flag
as a pressed icon and the British flag as a rollover
icon.

COP 3330: GUIs In Java – Part 2 Page 27 © Dr. Mark Llewellyn

Icons, Pressed Icons, and Rollover Icons

default icon

rollover icon

pressed icon

COP 3330: GUIs In Java – Part 2 Page 28 © Dr. Mark Llewellyn

Alignments

• Horizontal alignment specifies how the icon and text are
placed horizontally on a button.

• You can set the horizontal alignment using one of the five

constants: LEADING, LEFT, CENTER, RIGHT,

TRAILING.

– At present, LEADING and LEFT are the same and TRAILING and

RIGHT are the same. Future implementation may distinguish them.

• The default horizontal alignment is

SwingConstants.TRAILING.

COP 3330: GUIs In Java – Part 2 Page 29 © Dr. Mark Llewellyn

Alignments

• Vertical alignment specifies how the icon and text
are placed vertically on a button.

• You can set the vertical alignment using one of
the three constants: TOP, CENTER,

BOTTOM.

• The default vertical alignment is
SwingConstants.CENTER.

COP 3330: GUIs In Java – Part 2 Page 30 © Dr. Mark Llewellyn

Text Positions

• Horizontal text position specifies the horizontal
position of the text relative to the icon.

• You can set the horizontal text position using
one of the five constants: LEADING, LEFT,

CENTER, RIGHT, TRAILING.

• The default horizontal text position is
SwingConstants.RIGHT.

COP 3330: GUIs In Java – Part 2 Page 31 © Dr. Mark Llewellyn

Text Positions

• Vertical text position specifies the vertical position
of the text relative to the icon.

• You can set the vertical text position using one
of the three constants: TOP, CENTER.

• The default vertical text position is
SwingConstants.CENTER.

COP 3330: GUIs In Java – Part 2 Page 32 © Dr. Mark Llewellyn

NOTE

• The constants LEFT, CENTER, RIGHT, LEADING,

TRAILING, TOP, and BOTTOM used in AbstractButton

are also used in many other Swing components. These constants
are centrally defined in the
javax.swing.SwingConstants interface.

• Since all Swing GUI components implement
SwingConstants, you can reference the constants through
SwingConstants (class reference) or a GUI component
(instance reference). For example,
SwingConstants.CENTER is the same as
JButton.CENTER.

• JButton can generate many types of events (as we’ll see later),
but often you need to respond to an ActionEvent. When a
button is pressed, it generates an ActionEvent.

COP 3330: GUIs In Java – Part 2 Page 33 © Dr. Mark Llewellyn

Practice Problem

• Modify the microwave oven front panel so that the GUI looks
like the following.

COP 3330: GUIs In Java – Part 2 Page 34 © Dr. Mark Llewellyn

Using Buttons
• As a brief introduction to event-driven programming, the next

example, creates a message panel that displays a message and then
allows the user, through the use of buttons, to move the message
either left or right in the panel.

• The major steps in the program are:

1. Create the user interface.

2. Create a MessagePanel object to display the message. (The

MessagePanel class is separate from this program and we’ll use it again
later. In this case the messagePanel object is deliberately declared
protected so that it can be referenced by a subclass in future examples.)
Place it in the center of the frame, and create two buttons on a panel and
place the panel in the south area of the frame.

3. Process the event. Create and register listeners for processing the action
event to move the message left or right depending on which button was
clicked (pressed).

COP 3330: GUIs In Java – Part 2 Page 35 © Dr. Mark Llewellyn

Using Buttons

Initial frame

Frame after user has

clicked the left button

a few times

Frame after user has

clicked the right button

a few times

COP 3330: GUIs In Java – Part 2 Page 36 © Dr. Mark Llewellyn

Example – Using Buttons

COP 3330: GUIs In Java – Part 2 Page 37 © Dr. Mark Llewellyn

Uncomment

these lines to set

an icon image on

the button.

COP 3330: GUIs In Java – Part 2 Page 38 © Dr. Mark Llewellyn

Register listener for left

button and set
actionPerformed()

Register listener for right

button and set
actionPerformed()

COP 3330: GUIs In Java – Part 2 Page 39 © Dr. Mark Llewellyn

Check Boxes

• A toggle button is a two-state button (like a
typical light switch – its either on or off).

• JToggleButton inherits
AbstractButton and implements a toggle
button.

• Often one of JToggleButton’s subclasses
JCheckBox and JRadioButton are used to
enable the user to toggle a choice on or off.

• We’ll look at the JCheckBox class first.

COP 3330: GUIs In Java – Part 2 Page 40 © Dr. Mark Llewellyn

JCheckBox

• JCheckBox inherits all the properties from AbstractButton, such as text,
icon, mnemonic, verticalAlignment,

horizontalAlignment, horizontalTextPosition,

verticalTextPosition, and selected, and provides several
constructors to create check boxes, as shown below:

javax.swing.JCheckBox

+JCheckBox()

+JCheckBox(text: String)

+JCheckBox(text: String, selected:

boolean)

+JCheckBox(icon: Icon)

+JCheckBox(text: String, icon: Icon)

+JCheckBox(text: String, icon: Icon,

selected: boolean)

Creates a default check box button with no text and icon.

Creates a check box with text.

Creates a check box with text and specifies whether the check box is

initially selected.

Creates a checkbox with an icon.

Creates a checkbox with text and an icon.

Creates a check box with text and an icon, and specifies whether the check

box is initially selected.

javax.swing.AbstractButton

javax.swing.JToggleButton

COP 3330: GUIs In Java – Part 2 Page 41 © Dr. Mark Llewellyn

Example – CheckBoxDemo

ButtonDemo

JFrame

CheckBoxDemo

COP 3330: GUIs In Java – Part 2 Page 42 © Dr. Mark Llewellyn

Example – CheckBoxDemo

COP 3330: GUIs In Java – Part 2 Page 43 © Dr. Mark Llewellyn

Initial GUI

After clicking Centered checkbox

After clicking all three checkboxes

COP 3330: GUIs In Java – Part 2 Page 44 © Dr. Mark Llewellyn

Comments on CheckBoxDemo
• The CheckBoxDemo class extends ButtonDemo and adds

three check boxes to control how the message is displayed.

• When a CheckBoxDemo is constructed, its superclass’s no-arg
constructor is invoked, so we did not need to rewrite the code
that is already in the constructor of ButtonDemo.

• When a check box is checked or unchecked, the listener’s
actionPerformed method is invoked to process the event.
When the Centered check box is checked or unchecked, the
centered property of the MessagePanel class is set to
true or false.

• The current font name and size used in the MessagePanel are
obtained from the MessagePanel.getFont() using the
getName() and getSize() methods. The font styles are
specified in the check boxes. If no font style is selected, the font
style is Font.PLAIN.

COP 3330: GUIs In Java – Part 2 Page 45 © Dr. Mark Llewellyn

Comments on CheckBoxDemo
• The setFont method defined in the Component class is

inherited in the MessagePanel class. This method
automatically invokes the repaint method. Invoking
setFont in MessagePanel automatically repaints the
message.

• A check box fires an ActionEvent and an ItemEvent when
it is clicked. You could process either the ActionEvent or the
ItemEvent to redisplay the message. The previous version of
the program processes the ActionEvent. The following
version of the same program processes the ItemEvent.

• Run both versions of the check box demo program to convince
yourself that both behave the same way even though a different
type of event is being handled in each version.

COP 3330: GUIs In Java – Part 2 Page 46 © Dr. Mark Llewellyn

Example – CheckBoxUsingItemEvent

COP 3330: GUIs In Java – Part 2 Page 47 © Dr. Mark Llewellyn

Example – CheckBoxUsingItemEvent

This method is the

same as in the previous

example

COP 3330: GUIs In Java – Part 2 Page 48 © Dr. Mark Llewellyn

Radio Buttons

• Radio buttons, also known as option buttons, enable you to
choose a single item from a group of choices.

• In appearance radio buttons resemble check boxses, but check
boxes display a square that is either checked or unchecked,
whereas radio buttons display a circle that is either filled (if
selected) or blank (if not selected).

• JRadioButton inherits AbstractButton and provides
several overloaded constructors to create radio buttons. The
constructors are similar in nature to those for JCheckBox.

• The UML (again a partial UML) for the JRadioButton class
is shown on the next page.

COP 3330: GUIs In Java – Part 2 Page 49 © Dr. Mark Llewellyn

Radio Buttons

javax.swing.JRadioButton

+JRadioButton()

+JRadioButton(text: String)

+JRadioButton(text: String, selected:
boolean)

+JRadioButton(icon: Icon)

+JRadioButton(text: String, icon: Icon)

+JRadioButton(text: String, icon: Icon,

selected: boolean)

Creates a default radio button with no text and icon.

Creates a radio button with text.

Creates a radio button with text and specifies whether the radio button is

initially selected.

Creates a radio button with an icon.

Creates a radio button with text and an icon.

Creates a radio button with text and an icon, and specifies whether the radio

button is initially selected.

javax.swing.AbstractButton

javax.swing.JToggleButton

COP 3330: GUIs In Java – Part 2 Page 50 © Dr. Mark Llewellyn

Example – RadioButtonDemo

See Note on

page 53

Our approach here is to

extend the CheckBoxDemo

class by adding the radio

button features. We could

have also add the code

directly to the

CheckBoxDemo, This

approach is somewhat

classier, since the

CheckBoxDemo class can

always be reused to

implement just check

boxes.

COP 3330: GUIs In Java – Part 2 Page 51 © Dr. Mark Llewellyn

Example – RadioButtonDemo

RadioButtonDemo

CheckBoxDemo

ButtonDemo

JFrame

COP 3330: GUIs In Java – Part 2 Page 52 © Dr. Mark Llewellyn

Example – RadioButtonDemo

Initial GUI

After Radio and Check Buttons set

COP 3330: GUIs In Java – Part 2 Page 53 © Dr. Mark Llewellyn

Grouping Radio Buttons

• To group radio buttons, you need to create an instance of
java.swing.ButtonGroup and use the add method to add
them to it as shown in the code on page 50.

• Without putting radio buttons into a group, the buttons can be
selected independently of one another. The act of placing the
buttons into the group is what makes the buttons within that
group mutually exclusive. To see this yourself, remove the
statements from the program that create the button group and add
the buttons to it and then re-run the program and you will be able
to select all three radio buttons simultaneously.

• When a radio button is changed (selected or deselected), it fires
an ItemEvent and then an ActionEvent.

• To see if a radio button is selected, use the isSelected()

method.

COP 3330: GUIs In Java – Part 2 Page 54 © Dr. Mark Llewellyn

Labels
• A label is a display area for a short text message, an

image, or both. It is often used to label other
components (usually text fields, to indicate what the
user is to enter in the field).

• JLabel inherits all the properties of the
JComponent class and contains many properties
similar to the ones in the JButton class.

• The UML for the JLabel class is shown on the next
page.

COP 3330: GUIs In Java – Part 2 Page 55 © Dr. Mark Llewellyn

JLabel

javax.swing.JLabel

-text: String

-icon: javax.swing.Icon

-horizontalAlignment: int

-horizontalTextPosition: int

-verticalAlignment: int

-verticalTextPosition: int

-iconTextGap: int

+JLabel()

+JLabel(icon: javax.swing.Icon)

+JLabel(icon: Icon, hAlignment: int)

+JLabel(text: String)

+JLabel(text: String, icon: Icon,

hAlignment: int)

+JLabel(text: String, hAlignment: int)

The label’s text.

The label’s image icon.

The horizontal alignment of the text and icon on the label.

The horizontal text position relative to the icon on the label.

The vertical alignment of the text and icon on the label.

The vertical text position relative to the icon on the label.

The gap between the text and the icon on the label (JDK 1.4).

Creates a default label with no text and icon.

Creates a label with an icon.

Creates a label with an icon and the specified horizontal alignment.

Creates a label with text.

Creates a label with text, an icon, and the specified horizontal alignment.

Creates a label with text and the specified horizontal alignment.

javax.swing.JComponent

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 2 Page 56 © Dr. Mark Llewellyn

JLabel

// Create an image icon from image file

ImageIcon icon = new ImageIcon(“image/grapes.gif");

// Create a label with text, an icon,

// with centered horizontal alignment

JLabel jlbl = new JLabel("Grapes", icon,

SwingConstants.CENTER);

// Set label's text alignment and gap between text and

icon

jlbl.setHorizontalTextPosition(SwingConstants.CENTER);

jlbl.setVerticalTextPosition(SwingConstants.BOTTOM);

jlbl.setIconTextGap(5);

COP 3330: GUIs In Java – Part 2 Page 57 © Dr. Mark Llewellyn

Text Fields
• A text field can be used to enter or display a string.
JTextField is a subclass of JTextComponent.

• The UML for the JTextField class is shown below.

javax.swing.JTextField

-columns: int

-horizontalAlignment: int

+JTextField()

+JTextField(column: int)

+JTextField(text: String)

+JTextField(text: String, columns: int)

The number of columns in this text field.

The horizontal alignment of this text field (default: LEFT).

Creates a default empty text field with number of columns set to 0.

Creates an empty text field with specified number of columns.

Creates a text field initialized with the specified text.

Creates a text field initialized with the specified text and columns.

javax.swing.text.JTextComponent

-text: String

-editable: boolean

The text contained in this text component.

Indicates whether this text component is editable (default: true).

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 2 Page 58 © Dr. Mark Llewellyn

Example – TextFieldDemo

TextFieldDemo

RadioButtonDemo

CheckBoxDemo

ButtonDemo

COP 3330: GUIs In Java – Part 2 Page 59 © Dr. Mark Llewellyn

Initial GUI GUI after user input

COP 3330: GUIs In Java – Part 2 Page 60 © Dr. Mark Llewellyn

Comments on Text Fields
• When you move the cursor into a text field and press the Enter

key, it fires an ActionEvent.

• In this example program, the actionPerformed method sets
the new message into messagePanel.

• The pack() method automatically sizes the frame according to
the size of the components placed in it.

• The requestFocusInWindow() method is defined in the
Component class and requests the component to receive input
focus. Thus, jtfMessage.requestFocusInWindow()

requests the input focus on jtfMessage. You will see that the
cursor is placed on the jtfMessage object after the
actionPerformed method is invoked.

COP 3330: GUIs In Java – Part 2 Page 61 © Dr. Mark Llewellyn

Comments on Text Fields

• If a text field is used for entering a password, use
JPasswordField to replace JTextField.
JPasswordField extends JTextField and hides the input
with echo characters (e.g., ****). By default, the echo character
is *. You can specify a new echo character using the
setEchoChar(char) method.

COP 3330: GUIs In Java – Part 2 Page 62 © Dr. Mark Llewellyn

Text Areas
• If you would like to allow the user to enter multiple lines of text, you would

need to create several instances of JTextField. A better alternative is
to use JTextArea, which enables the user to enter multiple lines of text.

• The UML for the JTextArea class is shown below.

javax.swing.JTextArea

-columns: int

-rows: int

-tabSize: int

-lineWrap: boolean

-wrapStyleWord: boolean

+JTextArea()

+JTextArea(rows: int, columns: int)

+JTextArea(text: String)

+JTextArea(text: String, rows: int, columns: int)

+append(s: String): void

+insert(s: String, pos: int): void

+replaceRange(s: String, start: int, end: int):

void

+getLineCount(): int

The number of columns in this text area.

The number of rows in this text area.

The number of characters used to expand tabs (default: 8).

Indicates whether the line in the text area is automatically wrapped (default:

false).

Indicates whether the line is wrapped on words or characters (default: false).

Creates a default empty text area.

Creates an empty text area with the specified number of rows and columns.

Creates a new text area with the specified text displayed.

Creates a new text area with the specified text and number of rows and columns.

Appends the string to text in the text area.

Inserts string s in the specified position in the text area.

Replaces partial text in the range from position start to end with string s.

Returns the actual number of lines contained in the text area.

javax.swing.text.JTextComponent

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

COP 3330: GUIs In Java – Part 2 Page 63 © Dr. Mark Llewellyn

Example – DescriptionPanel Class

DescriptionPanel

-jlblImage: JLabel

-jtaTextDescription: JTextArea

+setImageIcon(icon: ImageIcon): void

+setTitle(title: String): void

+setTextDescription(text: String): void

+getMinimumSize(): Dimension

1
TextAreaDemo

JPanel

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

JFrame

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

1

COP 3330: GUIs In Java – Part 2 Page 64 © Dr. Mark Llewellyn

Example – DescriptionPanel Class

COP 3330: GUIs In Java – Part 2 Page 65 © Dr. Mark Llewellyn

Example – DescriptionPanel Class

COP 3330: GUIs In Java – Part 2 Page 66 © Dr. Mark Llewellyn

Example – TextAreaDemo

COP 3330: GUIs In Java – Part 2 Page 67 © Dr. Mark Llewellyn

Example – TextAreaDemo

Initial GUI

GUI after re-sizing – notice absence of slider bar

The text area is inside a JScrollPane,

which provides scrolling functions for

the text area. Scroll bars automatically

appear if there is more text than the

physical size of the text area.

The lineWrap property is

set to true so that the line

is automatically wrapped

when the text cannot fit in

one line.

The wrapStyleWord

property is set to true so

that the line is wrapped on

words rather than

characters.

The text area is set non-

editable so you cannot edit

the description in the text

area.

